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Abstract 
 

   Routing algorithms are used to find routes 
which are helpful to establish efficient data 
communication in computer networks. As 
the size of the network grows, finding 
routes becomes more complex in a non-
linear way. Therefore, some innovative 
techniques such as Ant Colony 
Optimization, intended for solving these 
issues have been presented by several 
researchers. This paper presents an 
empirical study consisting of experiments 
related to the use of such algorithms applied 
to the routing problem, as a framework for 
understanding its behavior. Results shown 
in this paper indicate that some factors 
involved in the process can be fine-tuned in 
order to improve the performance of the 
algorithm. 
 
 
1.   Introduction 
 
   Some researchers have studied the 
behavior of social insects. Insect colonies 
show a high degree of efficiency in their 
activities and survival capabilities. It is 
believed that the cause of this efficiency 
resides in that while each individual in the 
colony considers its labor like if it where 
alone, the impact of its activity over the 
colony seems to be like a centralized 
coordination.  
 
   Stigmergy [1] is a kind of indirect 
communication, involving individuals of 
social insects colonies, in which some 
senses are not needed for the 
communication to take effect. This 
communication is very useful to coordinate 
and divide their efforts, and it is attributed 
to this the great success the colonies have in 
the achievement of their goals. 
    

   During foraging, ants deposit a 
pheromone trail in their way. This 
pheromone acts as a guiding agent to all 
other individuals, from the nest to the found 
food source without the need of the sense of 
sight. Pheromone trail remains on the 
ground for a limited period of time, so it is 
obviously more concentrated in short paths. 
As ants get to their destination and back 
more quickly than over longer paths, 
pheromone trail are deposited more 
frequently. 
 
   In addition, ants prefer to move through 
paths where pheromone trail are more 
concentrated. In consequence ants generally 
find the shortest path to get to the food 
source and back to the nest, although some 
other times they proceed probabilistically. 
 
   While this happens in the natural world, 
we would like to point to the problem of 
routing. As defined in [2] a routing 
algorithm specifies the route by telling each 
intermediate node on the route on which 
outgoing edge de message should be sent, 
depending on the destination. 
 
In [3] Tel represents a network as a graph, 
where the nodes of the graph are nodes of 
the network, and there is an edge between 
two nodes if they are neighbors. The 
optimality of an algorithm depends on what 
is called the best path. A best path can be 
defined in terms of  minimum hops, the 
shortest path or the minimum delay. 
 
   As the size of WANs grows, routing 
process may get very complex, and 
algorithms implemented on routing 
equipments may not show the best 
performance, therefore, distributed behavior 
of these systems is an important issue to 
address.   
  
    Many works has been presented in order 
to obtain the best path. They have been 



presented in order to solve different aspects, 
from distributed algorithm point of view. In 
this paper we propose a new approach. 
  
 Previous research [4] have shown that it is 
possible to model some complex problems, 
such as discrete optimization, quadratic 
assignment, traveler agent, among others, 
beginning from the inspiration of social 
insect behavior. 
 
   The aim of this paper is to contribute to 
the understanding on how ant algorithms 
work, and present relevant results of a set of 
empirical experimentations in a seek for 
optimal parameters, applied to the ANTNet 
algorithm developed by Dorigo, which 
intention is to address the problem of path 
determination optimization using ant 
algorithms. 
 
   We have found a convenient value rank 
for the variables of the system, and we 
believe they can be used in most of the 
network topologies. 
 
   The remainder of this paper is organized 
as follows. In section 2 we describe some 
related work. In section 3 we presents the 
model of our proposition. We explain our 
experiments and results in section 4.Section 
5 is dedicated to our conclusions and the 
future work. 
 
    
2.   Related Work 
 
   Di Caro and Dorigo [5], have introduced 
an algorithm for adaptative routing based 
on the foraging behavior of ant colony. 
These algorithms explore data networks by 
the mean of routing table construction, and 
keep them adapted to network traffic 
conditions. This algorithm was named 
ANTNet. 
 
    Fundamentally, algorithm consists of the 
creation of artificial ants on each node of a 
network, represented by a graph with nodes 
and bidirectional links, at regular time 
intervals. 
 

•  Each node is characterized by the 
number of neighbors and a routing 

table, which contains probabilities 
of choosing neighbor n on the next 
hop, being d the destination node. 

•  Ants choose randomly a destination 
node and select next node among 
non-visited neighbor nodes. 
Probability of selecting a particular 
node is proportional to the value of 
the routing table for this node, as 
well as a local pool, which are 
created at each node by local 
traffic. 

•  Each visited node identifier is 
pushed into a node stack, which is a 
part of the ant’s data structure. The 
time the ant has taken to get to the 
destination node is also stored. 

•  When an ant reaches destination 
node, it generates a backward ant 
and transfers the stack content to 
the new ant and then it dies. 

•  Backward ant takes the same route 
than the ant which generated the 
route, but in an opposite direction. 
As it goes back, the ant updates 
routing tables as shown ahead: 

 
o When the time the ant used 

to get to the destination 
node  is less than the time 
memorized in the model, 
then the ant updates the 
routing table, in other 
words, it deposits more 
pheromone. 

o When the time it took the 
ant to get to the destination 
node is larger than the time 
memorized in the model, 
then the ant does not 
change the routing table. 

 
   Di Caro & Dorigo algorithm was 
compared to the following traditional 
routing algorithms: 
 
� A simplified version of Open 

Shortest Path First (OSPF), the 
official routing algorithm for 
Internet. 

� A sophisticated version of the 
distributed and asynchronous 
algorithm known as Bellman Ford 
(BF), with a dynamic cost metric. 



� The algorithm Shortest Path First 
(SPF), with a dynamic cost metric. 

� The algorithm Q-Routing proposed 
by Boyan and Littman. 

� The algorithm Predicitve Q-
Routing, a Q-Routing algorithm 
extension. 

 
   The observable parameters in the tests 
were: 
 
� The delay in delivery of packets 
� The throughput, which means the 

total traffic transported. 
 
   With regard to throughput the variations 
between the different algorithms was 
minimal, while as much for delay, ANTNET 
showed a performance 4 times better than 
Q-routing, 3 times better than Predictive Q-
Routing, 2.5 times better than OSPF and 
1.5 times better than BF and SPF. 
 
   We believe that the performance of the 
algorithm could be optimized by 
appropriate manipulation of the parameters 
involved in its operation. Dynamic 
manipulation of these parameters, in 
function of the state of the system at each 
time step, is a part of our proposed model. 
 
 
3. The Model 
 
   The proposed algorithm consists in the 
creation of artificial agents (ants and 
pheromone) which simulate the acting 
factors in the process of stigmergy. These 
agents are conformed by a collection of 
parameters that can be quantitatively varied 
in order to observe the global performance 
of the system, and try to find the optimal 
combination of factors to offer an 
approximation to the problem in the less 
time possible. 
 
   Determination of mentioned parameters is 
not a trivial task, since the global behavior 
of the system is an emergent property of the 
local interaction of the individual agents. In 

consequence, it can not be explained from 
the individual capabilities of these agents. 
 
   The model considers a simulated 
environment of Wide Area Networks 
(WANs), which are conformed by nodes in 
a graph and each one of them represents a 
Local Area Network (LAN). Links between 
nodes are represented by edges in the 
graph. See figure 1. 
 

 
Figure 1.WAN network conformed by LANs 
 
   The algorithm consists in the creation of 
an ant for each network node with a random 
chosen destination node. This first 
generation of ants chooses next node in the 
search of the destination node using a 
uniform distribution of probabilities.  
 
   During the selection of the next node, it is 
necessary to verify that the node has not 
been visited yet by the same ant, in order to 
avoid infinite loops. To achieve this, the ant 
stores each visited node ID, which can 
produce two possibilities: 
 
� In the case that selected node was 

previously visited, process of 
selection of the next node is 
repeated. 

� In the case that selected node was 
not previously visited, the ant 
directs to it. 

 
   If the ant reaches a dead end, that is, 
every neighbor node have been visited, the 
ant dies and a new ant is created departing 
from this node with a destination node 
selected randomly, as shown in the figure 2. 
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Figure 2. Ant does not find a node to visit 
 
 
   Every node has a routing table associated 
with it, which represents the pheromone 
concentration that exists at each node. 
 
   This table is conformed by a two 
dimensional array which values are defined 
by a probabilistic function Pnd., This 
function is the probability of choosing the 
link that takes the ant to the neighbor node 
n when destination node is node d. In other 
words, Pnd is the degree of goodness of this 
route towards destination node d. Initially, 
this table has values that correspond to a 
uniform distribution of probabilities, as 
shown in figure 3. 
 
   The operation of the system is performed 
in discrete steps. At every step, all ants 
advance forward one node. The born of 
new generation of ants is made in a iterative 
way, after certain number of steps and the 
frequency of new births is a controllable 
parameter. 
 
   When the ant reaches its destination, it 
returns to the origin node, depositing a 

pheromone quantity at every node as it goes 
back.  This action is made in function of the 
quantity of energy the ant still have in its 
body; if the ant had to walk more nodes, it 
has less energy and less pheromone to 
deposit.  

 
   When an ant gets to some particular node, 
it finds that the routing table have been 
modified by other ants. This way indirect 
communication between individuals appear, 
which is referred to as stigmergy. 
 
   In the last generation, we create as many 
ants as nodes exists in the system. It is 
intended to get from each node to all other 
nodes, in order to evaluate the work of 
earlier generation of ants. 
 
   We propose two different schemes for 
updating routing tables: 
 
� The first one consists in depositing 

a fixed amount of pheromone on 
every node, proportionally to the 
number of nodes previously visited. 
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Figure 3. Initial routing table for node 12 

 
 
 
� In the second one, the ants consider 

the amount of elapsed steps in the 
global process, as well the number 
of visited nodes in order to 
determine the amount of 
pheromone deposited until that 
moment.  

 
   Previous work in artificial ants 
simulation, indicate that the parameters 
with more incidence on the global system 
behavior are the pheromone and the 
sensibility of ants to this agent [6]. This is 
the reason why we considered the second 
way of depositing pheromone. 
 
   In order to simulate sensibility of ants to 
pheromone, we looked for an existent 
variable in the system. The selected 
variable was the amount of live ants on 
each step, as a factor which dynamically 
modifies the quantity of pheromone in the 
system to evaluate the performance of the 
algorithm.  
 
   As an additional proposal, we generated 
two approaches to evaluate the system, 
which have impact directly on the way the 
last generation of ants choose the next node 
to visit. 
 

� In the first one, the ant selects next 
node to visit probabilistically using 
a probability distribution in the 
tables. 

� In the second one, the ant selects 
deterministically the link with the 
highest pheromone concentration,  
just the way it would be done by a 
data packet, which behavior should 
not be necessarily stochastic. 

 
   From the previous schemes, we have as a 
consequence three different 
implementations of the algorithm: 
 
� Every generation of ants which 

have found destination node, except 
for the last one, deposit on their 
way back a fixed amount 
pheromone trail, which depends on 
the route length. The last generation 
of ants selects the larger value in 
the table to choose the next node. 
When an ant find the destination 
node it dies. We call this version of 
the algorithm DFP (Deterministic 
with Fixed Pheromone). 

� Every generation of ants which 
have found destination node, except 
for the last one, deposit on their 



way back a fixed amount 
pheromone trail, which depends on 
the route length. The last generation 
of ants proceeds probabilistically to 
choose the next node. When an ant 
find the destination node it dies. 
We call this version of the 
algorithm DPP (Probabilistic with 
Fixed Pheromone). 

� Every generation of ants which 
have found destination node, except 
for the last one, deposit on their 
way back a variable amount of 
pheromone trail, which 
dynamically varies depending on 
the quantity of steps elapsed in the 
system, and consequently, the 
amount of live ants in the system, 
besides to the route length. The last 
generation of ants proceeds 
probabilistically to choose the next 
node. When an ant find the 
destination node it dies. We call 
this version of the algorithm PVP 
(Probabilistic with Variable 
Pheromone). 

 
   What is looked for, is that a multititude of 
ants acting over the system, eventually 
generate routes with the least possible 
number of hops, regardless of the source 
and destination nodes for a data packet. 
 
 
4. The Experiments and Results 
 
   It is necessary to mention that the 
evaluating parameter selected for the tests, 
was hop count, or the number of nodes an 
ant visits until it gets to its destination node. 
The reason why we choose this metric is 
because most of the routing algorithms as 
the distance vector algorithms, uses this 
metric. Under this scheme, a route with less 
hops is considered better than other which 
requires the ant to travel over more nodes. 

 
   As mentioned before, one of this work 
intentions is to have the possibility of 
validate this model with representative 
instances of the problem. We used for the 
experimentation three different network 
topologies, known as Simplenet (Figure 4), 
NSFNet (Figure 5) and NTTNet (Figure 6), 
every one of them with bi-directional links. 
 
   The reason why we used this network 
instances, is because the first represent  a 
typical complexity network, the second is a 
well balanced network (on number off 
nodes and links), and the third is 
unbalanced. 
 
   On the other hand, these topologies where 
also used by Marco Dorigo in his 
experiments, and we consider an important 
issue to find coincidences and deviations 
between our work and  the work of Dr. 
Dorigo. 
   

 
 

Figure 4.  Simplenet 
 



 
 

Figure 5.  NSFNet 
 

 

 
 

Figure 6.  NTTNet 
 
System Parameters Configuration 
 
   An important part of the experimental 
stage has been the selection of the 
parameters of the system. Some of them 
where manipulated in a systematic way, 
trying to find correlations between those 
parameters and the impact on the global 
performance of the algorithm, that is, 
performing a sensibility analysis.  
 
   The parameters to be manipulated where: 
The number of time steps of the system, the 
frequency of birth of new generations of 
ants, and the amount of pheromone of each 
ant. 
 
   Preliminary tests showed that the 
representative values for executing the 
different modalities of the program where 
those what are listed later on. These 
executions of the program were performed 
with every possible combination of values 
showed  below: 

 
� Number of time steps of the 

system: 2048, 4096, 8192, 16384, 
32768, 65536 

� Frequency of birth of new 
generations of ants: 64, 32, 16 

� Amount of pheromone: 0.001, 
0.005, 0.01, 0.05, 0.1 

 
   If we combine the different parameters 
and values, we have 90 different 
experiments; each one of them where 
executed 10 times, and we obtained the 
average results, searching for a  significant 
and consistent set of results; because 
variations in results could arise, due to the 
stochastic nature of the model. 
 
   This scheme of experiments where taken 
for the three versions of the program, so 
there where 2,700 executions of it, only for 
NSFNet, and later some significant values 
where selected to run over Simplenet and 
NTTNet networks. 
 
   We thought this was a representative 
set of tests which lets us distinguish and 
analyze the incidence of the involved 
factors and the differences between the 
versions of the program. 
 
Analysis and Discussion of Results 
 
   In this section some representative 
examples of the program runs, and their 
results, which leaded us to establish the 
most important conclusions of our work. 
 
   Most of the tests where made over the 
NSFNet, since we consider it as a typical 
complexity network and it is well balanced. 
Another reason was to have the chance to 
manually calculate optimal results, and to 
be able to compare these with the system’s  
output. 
 



Observable Parameters 
 
   As we consider a hop count metric, we 
thought that the most important parameters 
to measure are: 
 
� Total sum of hops that every one of 

the ants used in the last generation. 
If the system works correctly, this 
value must be near 278 total hops, 
which is the optimal measure of the 
system. We call Global to this 
parameter in the future. 

� Average of hops for each ant of last 
generation; this optimal value 
manually calculated is 3.15 hops 
per ant. This parameter is called 
average in the future. 

� At last, we consider the amount of 
ants which fail in their search for 
the destination node; when routing 
tables have not converge in well 
defined values, ants roam without 
finding destination node, they find 
dead ends and in consequence they 
die. In the future we call this 
parameter failures. 

 
 
Analysis of the Incidence of Controllable 
Parameters 
 
   As exposed before, the manipulated 
parameters were: 
 
� Quantity of steps the system acts. 

In the future steps. 
� Frequency of births of new 

generations of ants, expressed in 
quantity of steps, that is, a 
frequency of 16 means a new 
generation born every 16 steps. We 
call it frequency. 

� Quantity of pheromone. We call it 
pheromone. 

 

   Results show an important relationship 
between the three different controllable 
parameters. Some combinations of different 
values for each parameter, produce a 
system behavior which outputs values close 
to the optimum, although other 
combinations produced many failures or 
long routes. 
 
   An important detected observation is that, 
when it seems that varying one parameter 
has no effect over the global performance, 
suddenly it outputs results very close to 
optimal values. 
 
   In previous works with emergent 
behaviors [6], have been observed that 
“order is generated on the edge of chaos”. 
In other words, when it seems that the 
global system acts erratically, suddenly it 
stabilizes, which let us think there is a very 
thin line separating good from bad results, 
and some times, changes could be abrupt. 
 
   Below we analyze every one of the 
controllable parameters and its incidence 
over the global performance. 
 
 
Steps 
 
   Experiment results indicate that the 
quantity of steps the systems acts is a very 
important factor to the global performance 
of the algorithm. 
 
   In the models PFP and PVP, for similar 
values of frequency and pheromone, as we 
increment the number of steps, we observe 
how the quantity of global substantially 
descends as shown in figure 7. 
 
. 
 
 



 
 

 
 
 
 
 
 
 
 

Figure 7 PFP, 0.01 pheromone, frequency 16 
 

 
   In the model DFP, for similar values of 
frequency and pheromone to the past 
experiment, we observed a global value 
very close to the optimal value (278), 
independently of the steps value managed 
as shown in figure 8. We conclude there is 
a more anticipated system convergence than 
in the model PFP 
 
 
 
 
 
 
 
 
 
Figure 8 DFP, 0.01 pheromone, frequency 

16 
 
Frequency 
 
   Increasing the frequency of birth of 
generations of ants, has a similar effect over 
the system than increasing the number of 
steps, but the time needed to get to the 
system convergence is significantly lower. 
At the end, the relationship between steps 
and frequency, have effect over the number 
of live ants in the system. We observed that 
a similar amount of failures and average for 
opposite values of frequency and steps,  but 
similar values of pheromone, presented 

similar outputs.  This was true for PFP and 
PVP. 
 
   For similar values of controllable 
parameters than the last example,  but with 
DFP, values of average do not change 
considerably when incrementing 
pheromone and as we can see in figure 9, 
these get close to optimal values on most of 
the cases, no matter how much pheromone 
is considered in the experiment. 
 
   On the other side, quantity of failures in 
the system is practically equal to zero for 
any value of pheromone.  
 
 
 
 
 
 
 
 

Figure 9 DFP, 2K steps, frequency 32 
 
 
Pheromone 
 
   The quantity of pheromone assigned to 
each ant plays an important role in the 
performance of the algorithm. If each ant 
have enough energy to deposit a more 
intense pheromone trail, then less ants 
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would be necessary to conform good 
routing tables. 
 
   We observe in the experimentation that 
algorithms PFP and PVP, the amount of 
pheromone has an important impact over 
failures and average for any variation of 
other controllable parameters. This is 
shown in figure 10. 
 
   For DFP, we can see in general, that the 
amount of pheromone does not change the 
results. This algorithm seems to reach 
convergence since the initial stages of 
execution of the program. See figure 11. 
 
 
 
 
 
 
 
 

Figure 10 PFP, 16K steps, frequency 64 
 
 
 
 
 
 
 
 

Figure 11 DFP, 8K steps, frequency 32 
 
 
   To illustrate the importance of the 
asseveration of Millonas (Millonas, 1994), 
“Order is generated on the edge of chaos” , 
it is presented figure 12, where we can see 
that using fixed values for pheromone and 
frequency, passing from 4K steps to 8K 
steps, the variable global descends 
noticeably. 
 
   In figure 13, we observe that with a fixed 
amount of steps and frequency, a little 

increment of pheromone is enough to take 
the value of failures from 4.7 to 0, while 
average goes down from 5.21 to 3.58. 
 
 
 
 
 
 
 
 

Figure 12 Passing from 4K to 8K steps, 
global descends importantly 

 
 
 
 
 
 
 
 

Figure 13 Passing from 0.01 to 0.05 
pheromone, failures and average descends 

importantly 
 
 
   Combination of the best values for the 
controllable parameters, depend 
fundamentally in the size of the network. 
For a network with a few nodes, usually the 
values which can output good results are: 
 
� Frequency 32 or 16 
� 8K steps and greater 
� 0.005 pheromone and greater 

 
For a middle size network, recommended 
values are: 
 
� Frequency 32 or 16 
� 32K steps and greater 
� 0.01 pheromone and greater 

 
For a bigger size network, recommended 
values are: 
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� Frequency 16 
� 64K steps and greater 
� 0.05 pheromone and greater 

 
   It is important to say that once the results 
get near to optimal values, increasing 
values for the different variables, does not 
lead us to even better results. We can think 
that the system reaches stability in a point 
where the parameters have a convenient 
value, and any variation to this combination 
does not contribute to a better performance 
of the algorithm. 
 
 
Results on Simplenet and NTTNet 
 
   As mentioned earlier, most of the tests 
where performed over NSFNet. We made 
other experiments over Simplenet an 
NTTNet and the comments in the matter are 
the following: 
 
 
Simplenet 
 
   As this is a small network, it also is very 
simple in matter of complexity. The values 
for average and global manually calculated 
for this network are 2,92 and 82 
respectively. In figure 14 is shown that no 
matter the quantity of steps it is possible to 
reach system’s convergence with zero 
failures.  
 
 
 
 
 
 
 
 
Figure 14 DFP Simplenet, 0.05 pheromone, 

frequency 32 
 
 

NTTNet 
 
   In the case of this network, we did not 
calculate manually the optimal values for 
global  and average, because of the high 
complexity the problem presents. However, 
we believe it is important to include the 
results we got for its comment. 
 
   In general, we got values for average of 
8.5 when there are no failures. We assume 
this value is good, when we are talking 
about a network with 55 nodes. Variable 
global finds a light negative variation as 
steps are incremented, what lead us to make 
an important conclusion: The quantity of 
steps the system requires, is larger as the 
network nodes number grows. 
 
   Execution of these programs could take 
approximately 3 hours, when the number of 
steps where 128K and frequency 32. 
Decreasing these parameters, descend 
proportionally the time of execution. 
 
   The size of the problem, would turn 
unmanageable the use of conventional 
methods, if we would try to find best routes 
in a non distributed way. 
 
 
 
 
 
 
 
 
Figure 15 DFP NTTNet, 0.05 pheromone, 

frequency 32 
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Figure 16 DFP NTTNet, 0.05 pheromone, 

frequency 32 
 
 
5. Conclusions and Future 
Work 
 
   The use of algorithms inspired in social 
insect behavior, have reported promising 
results in the search for solutions for 
complex problems. Routing in networks 
with distributed ant algorithms, comprises a 
new and exciting source of research, 
because there are good reasons to affirm 
that knowledge on swarm intelligence [7], 
until now, have been acquired in a 
fragmented manner, and it is time to get all 
the pieces together. 
 
   We conclude that the simplicity of the 
implementation of the algorithm presented, 
plays an important role in the achievement 
of the objectives. Our work in comparison 
with the work of Dorigo, offers an 
advantage:  we could remark that the 
implementation is more simple, but it 
captures the essence of the problem and 
detects the variables that participate in the 
global system behavior, without the need of 
complicated algorithm implementation. 
 
   As these are emergent technologies, it is 
important to say that the methodology used 
where totally empirical. 
 
   We have found a convenient value rank 
for the variables of the system, and we 
believe, they can be used in most of the 
network topologies that could arise, 
however, it would be necessary to make 
more tests to declare the last with 
reliability. 
 
   We confirmed with experimentation that 
“The order is generated on the edge of 

chaos”, as it is affirmed by Mark M. 
Millonas. When it seems that the global 
system acts erratically, suddenly it 
stabilizes, which let us think that there is a 
very thin line that divides good and bad 
results, and in certain occasions, changes 
may be very abrupt, and that is why correct 
selection of optimal parameters are even 
more important. 
 
     Although these distributed routing 
techniques could be seen as modern and 
promising, they have not been implemented 
yet in a real network environment, because 
some important issues have to be address 
before. Network models used until now 
have been only reality simplifications and 
they are required to be proven in more 
realistic conditions: 
 
� Considering traffic control and 

congestion. 
� Flow control. 
� Quality of service 
� Packet loss. 
� Bandwidth requirements. 
� Routing tables in function of costs 

or other metrics. 
 
   Results obtained in this work, could be 
used as a starting point for future work. 
 
   In networks with a great number of nodes, 
execution time would take a few hours, 
given the number of independent agents 
that could be active in every stage of the 
execution, and it is recommended to adapt 
the algorithm to work over several 
processors, in other words, implement 
parallelism. 
 
   It is recommended to use Linux as 
operating system for the execution of these 
programs. Acquired experience in this 
work, showed that it is much faster to 
execute the programs on this platform. 
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